Efficient and selective adenovirus-mediated gene transfer into vascular neointima.
نویسندگان
چکیده
BACKGROUND Previous attempts to target arterial smooth muscle cells (SMCs) for gene delivery using liposomal or retroviral methods were limited by low transfection efficiency. We therefore evaluated the efficiency of adenovirus-mediated gene delivery in cultured vascular SMCs and in an in vivo model of balloon injury-induced SMC cell proliferation. METHODS AND RESULTS We used a recombinant adenovirus, Ad.RSV beta gal, which contained the beta-galactosidase (beta-gal) histochemical marker gene. For in vitro studies, rat aortic SMCs were incubated in media containing Ad.RSV beta gal for 5 to 120 minutes. The proportion of SMCs expressing the beta-gal gene product increased from 25% (5-minute exposure) to 80% (120-minute exposure). For in vivo studies, uninjured and injured rat carotid segments were incubated with 0.5 to 1.0 x 10(9) pfu Ad.RSV beta gal for 45 minutes. Uninjured arteries showed adenovirus-mediated gene transfer limited to the endothelium. Injured arteries were exposed to adenovirus 0, 3, 7, or 12 days after injury. In these segments, beta-gal expression was minimal with infection at 0 or 3 days after injury but marked when infection was delayed until 7 or 12 days after injury. Neointimal cells constituted the dominant target of adenovirus gene transfer, with efficiency of gene transfer ranging from 10% to > 75%. Medial SMCs, whether covered or uncovered by neointimal cells, were minimally infected. Infection with a control adenovirus vector showed no beta-gal staining. CONCLUSIONS Recombinant adenovirus selectively targets neointimal cells with high-efficiency gene transfer. This suggests that adenovirus vectors should be useful in targeting cells for the delivery of genes whose products may be relevant to the treatment of restenosis.
منابع مشابه
Adenovirus Endocytosis and Adenoviral Gene Transfer in Cardiovascular and Dermatologic Disease Models
Adenoviral gene transfer is a valuable tool in molecular biology research. In order to be an efficient and safe vector, adenovirus structure and infection mechanism as well as molecular biology of the used transgene need to be well studied. The aim of this study was to evaluate the role of adenovirus as a gene transfer vector from several perspectives. Adenovirus uses receptor-mediated endocyto...
متن کاملInclusion of the E3 region in an adenoviral vector decreases inflammation and neointima formation after arterial gene transfer.
Adenoviral vectors are promising agents for vascular gene transfer. Their use, however, is limited by inflammatory host responses, neointima formation, and brevity of transgene expression. Inclusion of the immunomodulatory adenoviral E3 genes in a vector might prevent inflammation and neointima formation and prolong transgene expression. We compared 2 adenoviral vectors in a model of in vivo ge...
متن کاملIntravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta.
BACKGROUND Gene transfer to the vessel wall may provide new possibilities for the treatment of vascular disorders, such as postangioplasty restenosis. In this study, we analyzed the effects of adenovirus-mediated vascular endothelial growth factor (VEGF)-C gene transfer on neointima formation after endothelial denudation in rabbits. For comparison, a second group was treated with VEGF-A adenovi...
متن کاملEfficient Transduction of Primary Vascular Cells by the Rare Adenovirus Serotype 49 Vector
Neointima formation and vascular remodeling through vascular smooth muscle cell migration and proliferation can limit the long-term success of coronary interventions, for example, in coronary artery bypass grafting (CABG). Ex vivo gene therapy has the potential to reduce unnecessary cell proliferation and limit neointima formation in vascular pathologies. To date, the species C adenovirus serot...
متن کاملAdenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta.
BACKGROUND Restenosis is a frequent problem after invasive treatment of atherosclerotic vessels and is associated with intimal hyperplasia, which is primarily a result of proliferation and migration of smooth muscle cells, leading to the formation of neointima. Because there is no effective conventional medication for restenosis, gene therapy is a potential new treatment to prevent neointima fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 88 6 شماره
صفحات -
تاریخ انتشار 1993